

Applications

- Agricultural pathogen control
- Genetic-based crop engineering
- Crop yield management

Inventor(s)

Ahmad Fakhoury, PhD Dr. Fakhoury is an Associate Professor of Plant Soil and Agricultural Systems at SIU Carbondale. His research specializes in plant pathology, fungal genetics, mycotoxins, and plantmicrobe interactions.

David Lightfoot, PhD

Dr. Lightfoot is a former Professor of Plant Soil and Agricultural Systems at SIU Carbondale. His research focuses on novel gene discovery by genomics, targeting commercially valuable disease resistances, phyto-pharmaceuticals, and crop yield boosting elements.

Contact

Kristy Owen Assistant Director kowen@siumed.edu (217) 545-6397

gdhA Gene Expression to Increase Infection Resistance in Plants

Members of the fungus genus *Aspergillus* produce aflatoxin, a strictly regulated and highly carcinogenic metabolite in plants. In particular, *Aspergillus flavus* commonly afflicts many important food crops including the cereal crops maize, sorghum, pearl millet, rice, wheat, and oilseeds including peanut, soybean, sunflower and cotton. Infection with *Aspergillus flavus* causes aflatoxin to accumulate, and a relatively small contaminated number of infected plants can contain enough toxin to necessitate discarding a large-scale crop harvest batch. Similarly, *Fusarium virguliforme* is another damaging fungal pathogen that causes root rot in crops. At this time, few options are available to control these pathogens.

Invention

SIU researchers have developed methods to increase crop resistance to both *Aspergillus flavus* and *Fusarium verguliforme*. Methods include transforming potentially susceptible plants with a bacterial NADP-specific glutamate dehydrogenase (gdhA) enzyme gene. Such transformed plants can be employed in the field to increase crop yield by reducing the impact of *Aspergillus flavus* and *Fusarium verguliforme*.

Key Advantages

- gdhA sequence confers resistance to multiple pathogens.
- Plant transformation with the gdhA sequence can be accomplished by standard means known in the art.
- gdhA sequence can be used across many crops, including a variety of traditional cereal crops.

Status

U.S. Patent #8,383,887 issued for this technology on February 26, 2013. The technology is available for license.

Other opportunities related to this technology, included but not limited to sponsored and/or collaborative research, may be available. Please reach out to the designated contact identified at left for more information.